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[1] Short term precipitation forecasts based on Lagrangian
advection of radar echoes are robust and have more skill
than numerical weather prediction models over time scales
of several hours. This is because the models do not
generally capture well the initial precipitation distribution.
We will refer to the advection-based methods as radar
nowcasts. Over longer time scales, we expect the models to
perform better than nowcast methods as they resolve
dynamically the large scale flow. We verify this
conceptual picture of the relative accuracy of radar
nowcasts and model forecasts using conventional skill
scores. We identify the cross-over point in time where
model forecasts start to have more skill than nowcast
methods. This occurs at about 6 hours after the forecast is
initiated. Citation: Lin, C., S. Vasić, A. Kilambi, B. Turner, and

I. Zawadzki (2005), Precipitation forecast skill of numerical

weather prediction models and radar nowcasts, Geophys. Res.

Lett., 32, L14801, doi:10.1029/2005GL023451.

1. Introduction

[2] For very short term prediction of precipitation (0–
3 hours), Lagrangian advection of radar echoes performs
best while for longer periods, forecasts based on numerical
models may be better. This concept is shown schematically
in Figure 1, adapted from Golding [1998], which depicts
qualitatively the loss of forecast skill as a function of
forecast lead time. Figure 1 is in turn adapted from an
earlier publication by Austin et al. [1987]. A similar figure
also appears in Wilson et al. [1998]. We examine this
conceptual picture quantitatively in our study. For the
purpose of this paper, we will refer to precipitation forecast
by Lagrangian advection of radar echoes as radar nowcasts.
[3] Precipitation predictability also depends on spatial

scale. Germann and Zawadzki [2002] examined the lifetime
of precipitation patterns derived from US continental scale
radar images from the storm to synoptic scales. They
developed a nowcast methodology that combines variational
echo-tracking with semi-Lagrangian advection that allows
for large scale rotational motion, which can be important
for the synoptic scales. We use their methodology to
compare the skill of radar nowcasts with model forecasts
of precipitation over the continental US. Four numerical
weather prediction models are used: two versions of the
Global Environmental Multiscale model (GEM) from the

Meteorological Service of Canada [Côté et al., 1998], the
ETA model from the US National Weather Service [Janjić,
1994] and the WRF model from the National Center for
Atmospheric Research (NCAR), [Michalakes et al., 1998].
We focus on the quantitative identification of the cross
over point in forecast lead time where the model would
perform better than the nowcast, as depicted schematically
in Figure 1.

2. Methodology

[4] We compare the skill of radar nowcasts with precip-
itation forecasts of 1-hour accumulated precipitation from
four models: GEM (two versions), ETA and WRF. The two
versions of GEM refer to the operational version that is
currently run at a resolution of 15 km, and an earlier version
(GEM/HIMAP) that is run over a smaller domain at 10 km
resolution. Table 1 presents a summary of the analysis
methodology. We report on the results of two separate
studies done with a slightly different methodology. The first
examines the GEM/HIMAP and ETA models in a
2,160 km � 2,160 km domain over the central and eastern
continental US, which is the domain studied byGermann and
Zawadzki [2002]. A total of 21 days is examined, covering the
summer and fall of 2003 (September 12, 13, 18, 27; October
14, 17, 25, 26, 28) and 2004 (May 21, 22, 30, 31; June 11, 24;
July 3, 4, 5, 6; August 19, 20). These dates were chosen due to
the availability of ETAmodel output. The first study period is
shown as the second and third columns of Table 1. The second
period examined has 35 days of precipitation during the
period August 13 to September 25, 2004, and covers the
continental US east of 102�W longitude; this was done as
radar coverage is poor west of the Rocky Mountain Front
Range. This is shown as the fourth and fifth columns of
Table 1. The radar precipitation data for both studies are taken
from US radar composites provided by Weather Decision
Technologies, Inc. (WDT), with 10-minute time resolution
and 5-km spatial resolution. For the first study period, we use
the 12-km resolution of the ETA model for comparison of
radar nowcasts and model forecasts. For the second study
period, model results are projected onto the radar grid for
analysis. Although the methodology is slightly different, the
results on the comparison of the skill of the radar nowcasts
and model forecasts for both study periods are essentially
the same, as we will see later.
[5] The period of comparison is over the duration of each

radar nowcast. More specifically, for every 24-hour model
forecast of the first study period, five radar nowcasts each of
duration 9 hours are initialized at times 3, 6, 9, 12, 15 hour.
Thus the first radar nowcast covers the period from hours 3
to 12, and the last nowcast from hours 15 to 24. The skill of
the five radar nowcasts is compared with the model forecast
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over the corresponding 9-hour duration of the nowcast.
For the second study period, two nowcasts each of duration
12 hours are performed and evaluated. A threshold of
10 dBZ in units of logarithmic radar reflectivity is used,
with rain rate (mm/hour) inferred from reflectivity as
(Z/300)2/3. Six 10-minute rain rates are used to obtain the
hourly accumulation.
[6] The skill measures probability of detection (POD),

false alarm rate (FAR) and critical success index (CSI) are
used for the first study period. They are categorical scores
based on a contingency table applied at each analysis grid
point over the verification period [Johnson and Olsen,
1998]. The radar-retrieved precipitation is taken as ‘‘truth’’,
with different thresholds of 0.1, 0.5 and 1.0 mm for hourly
accumulation. For a perfect forecast, POD = 1, FAR = 0 and
CSI = 1. Following Germann and Zawadzki [2002], we also
calculate the conditional mean absolute error (CMAE; based
on the logarithm of the reflectivity) for the second study
period. This score measures the domain average absolute
error of the forecast at a particular time. For a perfect
forecast, CMAE = 0.

3. Results

[7] For the first study period (summer and fall of 2003–
04), we evaluate the skill scores POD, FAR and CSI for five

daily 9-hour radar nowcasts initiated at different times, and
compare them with the scores obtained from the
corresponding 9-hour periods of the 24-hour model fore-
casts (GEM/HIMAP, ETA). There is a total of 21 days of
24-hour model forecasts available for study. Figure 2 shows
the averaged skill scores over these cases based on a 0.1 mm
precipitation threshold, together with the ±1 standard devi-
ation curves for the radar nowcast and GEM/HIMAP
forecast. The radar nowcast starts with high initial skill
(POD > 80%, CSI > 60%, FAR < 25%), and the skill
decreases with forecast lead time. This is because the initial
rain field is well captured by the nowcast, but the skill
decreases relatively rapidly as development and decay are
not taken into account in an advection-based nowcast. The
models start with lower skill than the nowcasts, as the initial
precipitation field is not captured as well. However, the
model skill remains almost constant over the 9-hour period
(POD � 50%, CSI � 30%, FAR � 65%). This results in a
crossing of the skill curves of the radar nowcast and the
model forecast for all three scores. The cross over point
occurs at about 5–6 hours for POD, and about 7–8 hours
for FAR and CSI. Thus the radar nowcast has more skill
than the models for forecast lead times shorter than about
6 hours, with the models becoming more accurate after this
period. This is in agreement with the conceptual picture of
Golding [1998] presented in Figure 1. The ±1 standard
deviation curves give an idea of the spread of the skill in the
cases, and the cross over point inferred from the +1 and �1
standard deviation curves yield similar results as for the
average. A difference between the GEM/HIMAP and ETA
models is the latter performs better with a higher POD
score, resulting in a cross over point which is about
1.5 hours earlier. We attribute this to the generally sharper
precipitation features of GEM/HIMAP precipitation, result-
ing in a higher possibility of error. This difference becomes
insignificant for FAR and CSI. All the above results are
robust with respect to the precipitation threshold: the con-
clusions regarding the cross over point remain unchanged
when higher thresholds are used (0.5 and 1.0 mm; figures
not shown). Further analysis was also performed where the
radar and model results were smoothed by filtering out
scales smaller than 4 or 8 times (4D, 8D) the grid resolution
(D = 12 km), as the small scales have less predictability. The
skill scores are uniformly improved upon smoothing for
both radar nowcasts and model forecasts, but the cross over
point in time between the two remain largely unchanged
(figures not shown).

Table 1. Summary of Analysis Methodologya

Model GEM/HIMAP ETA GEM (Operational) WRF

Agency MSC, EC NWS, US MSC, EC NCAR, US
Reference Coté et al. [1998] Janjić [1994] Coté et al. [1998] Michalakes et al. [1998]
Domain Continental US

2,160 � 2,160 km2
Continental US
2,160 � 2,160 km2

Continental US
east of 102�W

Continental US
east of 102�W

Resolution 10 km 12 km 15 km 28 km
Period Summer, fall of

2003–04, 21 days
Summer, fall of
2003–04, 21days

Summer of
2004, 35 days

Summer of
2004, 35 days

Skill measures POD, FAR, CSI POD, FAR, CSI POD, FAR, CSI, CMAE POD, FAR, CSI, CMAE
aThe models used are GEM (two versions), ETA and WRF. The analysis domains, model resolution of forecasts, period of analysis and skill measures

used are shown. The first study period uses GEM/HIMAP and ETA models (second and third columns), while the second study period uses GEM
(operational) and WRF models (fourth and fifth columns). See text for further details. (MSC: Meteorological Service of Canada; EC: Environment Canada;
NWS: National Weather Service; NCAR: National Center for Atmospheric Research).

Figure 1. Schematic representation of the loss of forecast
skill as a function of forecast lead time. The solid line
represents the theoretical limit of predictability. The dashed
and dotted lines correspond respectively to numerical
weather prediction models and nowcasting methods (from
Golding [1998], copyright 1998, Royal Meteorological
Society).
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[8] Similar results are obtained for the second study
period (summer and fall of 2004) with two different
models (GEM operational, WRF) over the continental
US east of 102�W (Figure 3). Details of the WRF can
be found in the work of Carpenter et al. [2004]. Two
12-hour radar nowcasts are performed for each 24-hour
model forecast, with a total of 35 days of model forecasts
available for analysis. MAPLE refers to the ‘‘McGill
Algorithm for Precipitation Nowcasting by Lagrangian
Extrapolation’’, the radar nowcast algorithm based on the
work described by Germann and Zawadzki [2002] and
Turner et al. [2004] that is used in this study. A fourth
skill measure (CMAE) is included in this analysis. The
results for the first study period were obtained either with
no smoothing or smoothing at 4 or 8 times the grid
resolution. For the second study period, we implement a
‘‘near optimal forecast filtering (MAPLE-NOFF)’’ for the
radar nowcasts, described by Turner et al. [2004]. In
MAPLE-NOFF, the unpredictable small scales as defined
by Germann and Zawadzki [2002] are filtered out pro-
gressively as the nowcast proceeds. In addition, a thresh-
olding is applied to optimize the CSI score [see Turner et
al., 2004]. The optimized nowcasts from MAPLE-NOFF
have significantly higher skill than MAPLE (Figure 3),
especially for CMAE, where the score is superior to the
model forecast for up to 12 hours lead time. However, the
overall results regarding the radar nowcasts and model
forecasts are similar to our first study period: the models
have less skill than the radar nowcast for forecast lead
times less than about 6 hours and higher skill subsequently.
GEM again has a lower score compared to WRF using
the POD score, but this difference becomes marginal for

Figure 2. Skill scores (POD, FAR, CSI) for 9-hour radar
nowcasts (solid) and model precipitation forecasts (dashed
for GEM/HIMAP, dash-dot for ETA), averaged for all cases
over the 21 days of the first analysis period. The threshold
for hourly precipitation is 0.1 mm. The thin solid lines are
the ±1 standard deviation for the radar nowcasts and GEM/
HIMAP model, taken over all cases.

Figure 3. As in Figure 2 but for the second analysis period using two different models (long dashed for WRF and short
dashed for GEM operational). The solid (MAPLE) and dotted (MAPLE-NOFF) curves correspond to two versions of
12-hour radar nowcasts; see text for description. The 12-hour forecast period is shown as the abscissa at the bottom, starting
at t = 0. The threshold for hourly precipitation is 0.1 mm.
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the other scores. The model forecast skill is also approx-
imately constant over the 12-hour evaluation period.

4. Conclusion

[9] We have examined the skill of precipitation forecasts
from radar nowcasts and numerical weather prediction
models. Four models were examined (GEM/HIMAP, GEM
operational, ETA, WRF) over two study periods: 21 days
over the summer and fall of 2003–04, and 35 days over the
summer of 2004. The domain of analysis is the central and
eastern US (2,160 km � 2,160 km) for the former and the
continental US east of 102�W for the latter. Hourly accu-
mulated precipitation amounts were examined. For the first
period, five 9-hour radar nowcasts were performed for each
24-hour model forecast, while two 12-hour nowcasts were
done for the second period. Skill scores for POD, FAR, CSI
and CMAE were calculated and compared. Although the
details of the methodology of the two analysis periods are
slightly different, the results are similar due to the large
sample of precipitation cases examined. According to all
four measures, radar nowcasts start with high initial skill that
decreases with forecast lead time. The models have lower
skill at the beginning of the forecast, but the skill remains
approximately constant throughout the forecast period. At a
lead time of about 6 hours, the skill of the radar nowcast has
decreased to approximately the same level as the models.
The reason is the radar nowcasts capture well the initial
precipitation distribution, thus resulting in high initial skill.
The skill decreases with forecast lead time as development/
decay processes are not resolved in an advection-based
nowcast algorithm. On the other hand, the models start with
initial precipitation conditions that are not as good as the
radar’s, but the models’ skill remains approximately constant
throughout the forecast period as the models resolve the
large scale processes. The implementation of smoothing to
filter small unpredictable scales improve the overall scores,
but the cross over point in forecast lead time where the
models become more skilful than the radar is largely
unchanged. Our results verify quantitatively the conceptual
picture of the relative skills of radar nowcasts and model
forecasts proposed by Austin et al. [1987], Golding [1998]
and Wilson et al. [1998]. An ultimate goal is the blending of
radar nowcasts and model forecasts to yield an optimum
precipitation forecast.
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